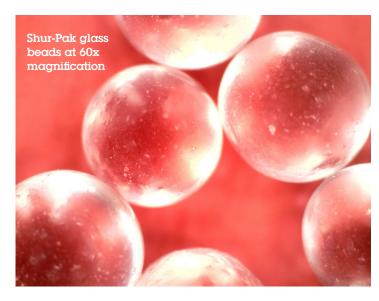
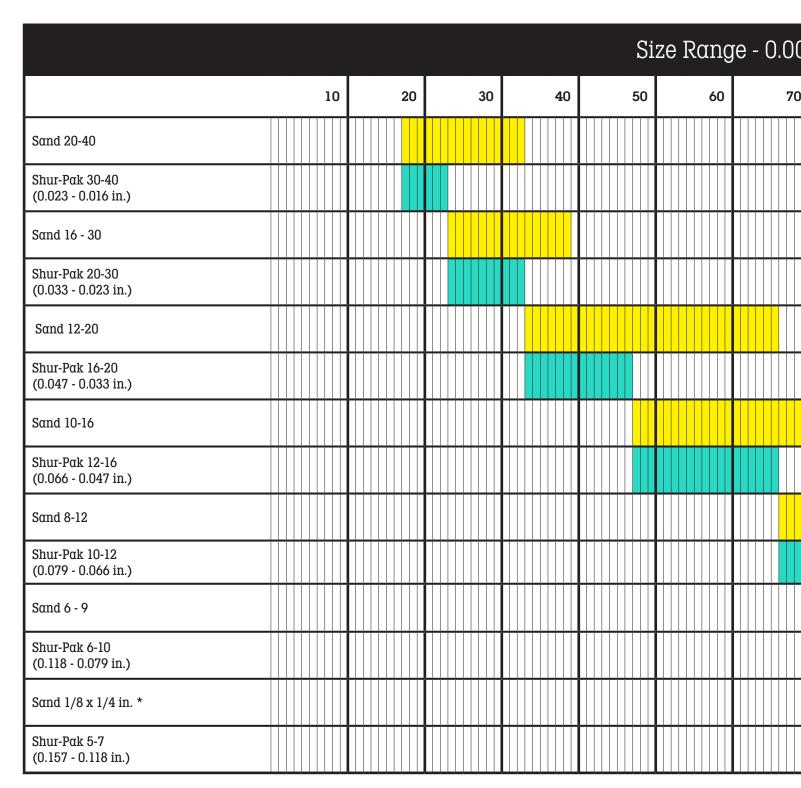


Shur-Pak™ Glass Bead Filter Pack

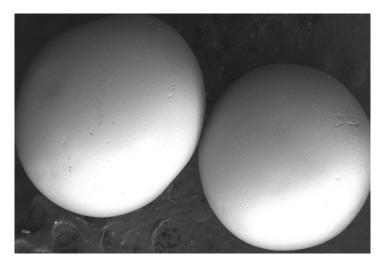

Easier to install than traditional filter pack, Shur-Pak™ is stronger, chemically inert and are almost perfect spheres — virtually eliminating bridging during installation that can be an issue in traditional filter pack.

Shur-Pak Glass Beads are used as an upgrade from traditional filter packs for water wells. Shur-Pak is easy to handle and can be sized and installed using similar methods and techniques.

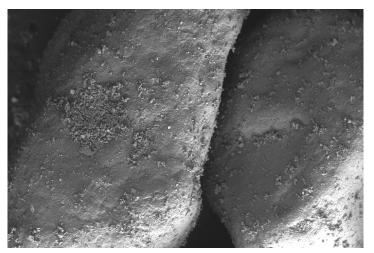
Features and Benefits


Glass beads for filter packs in water wells provide:

- Uniform and consistent bead size
- Stronger crush strength than gravel
- Simple to install and greatly reduces bridging
- Less compaction over the well life
- Faster development than gravel (40% - 60% reduction of time)
- Higher well efficiency
- Less loss of capacity from reduced bio-fouling and mineral scaling
- Extended operation intervals between well rehabilitation
- Easy to clean and chemical resistance
- Reduced operational costs
- Available in 1 metric ton sacks and 25 kg bags
- NSF/ANSI/CAN Standard 61 Drinking Water System Components Certified



Shur-Pak Sizing Chart vs Sand



^{*}Data extends off the graph

11	l in. Increments										
l	111	. 111C	remems	j	1		1				
		80	90	100	110	120	130	140	150	160	170

16-20 Shur-Pak beads magnified 50x with a scanning electron microscope (SEM)

8-12 Sand magnified 35x under a scanning electron microscope (SEM)

Chemical Composition

Compositior	Percentage		
Silicon Dioxide	SiO ₂	69.6%	
Sodium Oxide	Na ₂ O	13.3%	
Calcium Oxide	СαО	10.9%	
Mαgnesium Oxide	MgO	4.23%	
Aluminum Oxide	Al_2O_3	1.17%	

Shur-Pak Sizing

Product Description	US Mesh (approx)	Bead Diameter (in.)	Bead Diameter (mm)	Bulk Density (lb. ft.³)
Shur-Pak 30-40	30 - 40	0.024 - 0.016	0.60 - 0.40	101.13
Shur-Pak 20-30	20 - 30	0.033 - 0.024	0.85 - 0.60	101.13
Shur-Pak 16-20	16 - 20	0.046 - 0.033	1.18 - 0.85	101.13
Shur-Pak 12-16	12 - 16	0.067 - 0.046	1.7 - 1.18	101.13
Shur-Pak 10-12	10 - 12	0.079 - 0.067	2.0 - 1.7	100.51
Shur-Pak 6-10	6 - 10	0.118 - 0.079	3.0 - 2.0	99.88
Shur-Pak 5-7	5 - 7	0.157 - 0.118	4.0 - 3.0	98.01

Chemical and Physical Properties

Parameter	Description		
Physical Form	Solid, odorless, transparent, soda lime glass beads		
Mean Roundness by Bead Diameter	>93%		
Hardness	≥6.0-6.7 on Mohs scale		
Melting point	1450 – 1500 deg C		
Deformation temperature	580 – 650 deg C		
Uniformity Coefficient	1.1 to < 1.45		
Acidic Resistance (according to DIN 12116)	S2 Acid Resistant		
Specific Gravity	>2.45		

Johnson Screens Water Well Screens

North and South America Phone +1 651 636 3900 info.us@johnsonscreens.com Europe, Middle East & Africa Phone +3 3 23 75 05 42 info.fr@johnsonscreens.com Asia Pacific Phone +61 7 3867 5555 info.au@johnsonscreens.com